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The linear stability of a thin liquid layer bounded from above by a free surface
and from below by an oscillating plate is investigated for disturbances of arbitrary
wavenumbers, a range of imposed frequencies and selective physical parameters. The
imposed motion of the lower wall occurs in its own plane and is unidirectional
and time-periodic. Long-wave instabilities occur only over certain bandwidths of the
imposed frequency, as determined by a long-wavelength expansion. A fully numerical
method based on Floquet theory is used to investigate solutions with arbitrary
wavenumbers, and a new free-surface instability is found that has a finite preferred
wavelength. This instability occurs continuously once the imposed frequency exceeds
a certain threshold. The neutral curves of this new finite-wavelength instability appear
significantly more complex than those for long waves. In a certain parameter regime,
folds occur in the finite-wavelength stability limit, giving rise to isolated unstable
regions. Only synchronous solutions are found, i.e. subharmonic solutions have not
been detected. In Appendix A, we provide an argument for the non-existence of
subharmonic solutions.

1. Introduction
Yih (1968) studied the hydrodynamic stability of a thin liquid layer bounded from

below by a flat horizontal wall that performs unidirectional oscillations in its own
plane. The upper surface of the layer is a deformable free surface. Based on a
long-wave expansion, Yih found that long waves can become unstable for sufficiently
large-amplitude oscillations within regions corresponding to separated bandwidths of
the imposed frequency. As the frequency increases, an increasingly large amplitude
for the oscillatory motion is required to excite the instability.

Yih’s instability for this unsteady flow appears to be related to the long-wavelength
instability occurring for the steady flow of a liquid on an inclined plane (see e.g.
Yih 1963) because both involve the effect of shear on a deflection of a surface
along which the shear stress is prescribed (see Kelly et al . 1989 and Smith 1990
for detailed discussions of the instability mechanism for the falling film problem).
For Yih’s oscillating plane problem, no analysis has been reported so far for
arbitrary wavenumbers. The main aim of the present paper is to fill this gap in
our knowledge. As reported first by Or & Kelly (1995a), finite-wavenumber insta-
bilities can not only occur but can be more unstable than the long-wavenumber
instabilities.

Several recent studies can be viewed as being related to Yih’s problem. Woods &
Lin (1995) have extended the problem of a liquid layer flowing down an incline so
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as to allow the lower wall of the layer to perform oscillatory motions in a direction
perpendicular to its own plane. In this case, Faraday waves are excited due to the
effective modulation of gravity along with the usual long-wavelength surface waves
(Yih 1963) modulated by the oscillation. In more recent work (Lin, Chen & Woods
1996), the effects of tangential oscillations have been investigated but results are given
only for the case of nearly vertical walls. Coward & Renardy (1995) have reported
some results for the two-layer horizontal problem with a mean flow, but only for
the case of small-amplitude oscillations. From a different viewpoint, considerable
effort in understanding thermocapillary instabilities of the Marangoni–Bénard type
has been made recently in association with NASA’s experimental efforts in the area
of microgravity fluid physics. For that problem, a heated layer of liquid with a free
surface is examined. This paper is a by-product of an ongoing effort by the author
and Professor R.E. Kelly to understand the control of thermocapillary instabilities
by means of an imposed oscillatory shear; see, e.g. Or & Kelly (1995b). The present
results, however, are relevant to a much larger class of problems involving liquid films
and may be related to wave-induced instability of an interface.

The long-wave expansion is reviewed first to present the critical Reynolds number
for long waves as obtained by Yih (1968) and then extended to obtain the next order
correction in the expansion

Re = Re0 + Re2k
2 + ... . (1.1)

Besides giving information about the curvature of the neutral stability boundaries,
the value of Re2 is used later to locate points where finite-wavelength neutral curves
branch off the long-wavelength neutral curves.

During the course of several other related studies involving the stability of unsteady
shear flows (Kelly & Hu 1994; Schulze & Davis 1995; Or & Kelly 1995b), the authors
have noted their unsuccessful attempts to find subharmonic solutions. Yih’s (1968)
long waves are of the synchronous type as well. One might argue that the analysts
simply have not located the right regions in parameter space for the occurrence of
subharmonic solutions. However, in Appendix A to this paper, it is argued that
subharmonic solutions simply do not exist for a class of equations that includes the
present ones.

2. Mathematical formulation
The configuration for the problem (see figure 1) consists of a horizontal liquid layer

of thickness h. The liquid is viscous, incompressible, and isothermal. The horizontal
extent of the liquid is assumed infinite. The upper boundary is a deformable free
surface; the bottom is a rigid wall, which performs a unidirectional oscillation in its
plane. The momentum equation and the continuity equation describing the system
are

∂tv + v · ∇v = − 1

ρ0

∇p+ ν∇2v, (2.1a)

∇ · v = 0, (2.1b)

where v is the liquid’s velocity and p is its pressure. The rigid wall condition is given
by

v = iU0 cosωt at z = h, (2.2a)

where i is a unit vector in the x-direction, ω is the frequency and U0 is the modulation
amplitude of velocity. The primitive form of the free surface normal stress, tangential
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Figure 1. The geometric configuration.

stress and kinematic conditions, respectively, at z = η(x, y, t) where η measures the
surface deformation, are

n · T · n = p0 − σ
(

1

R1

+
1

R2

)
, (2.2b)

ti · T · n = 0, (2.2c)

where i = 1, 2 and

∂tη + v · ∇η = v · n. (2.2d)

In the above, T is the stress tensor of the three-dimensional space and, approximately,
n = (−ηx,−ηy, 1) (inward to fluid), t1 = (1, 0, ηx), and t2 = (0, 1, ηy). These are vectors
normal and parallel to the interface. On the right-hand side of the normal stress
equation, p0 is the air pressure, σ is the surface tension, and R1 and R2 are known
as the principal radii of curvature. Derivations of surface boundary conditions based
on the above primitive form of equations can be found in Joseph & Renardy (1993,
§ III-2).

The basic state is a periodic flow parallel to the wall. By introducing U0 as a
characteristic velocity, the equilibrium layer thickness h as the length scale and ω−1

as the time scale, we obtain the governing equations as follows. For this case the
surface is non-deformed, and the exact flow solution is given by

vs(z, t) = iU0{φc(z) cos t+ φs(z) sin t}, (2.3)

where the two expressions for the coefficients φc and φs are

φc(z) =
1

2

{
cosh(1 + i)βz

cosh(1 + i)β
+

cosh(1− i)βz

cosh(1− i)β

}
, (2.4a)

φs(z) = i
1

2

{
cosh(1 + i)βz

cosh(1 + i)β
− cosh(1− i)βz

cosh(1− i)β

}
, (2.4b)

where β will be defined shortly. The stability equations are derived from the momen-
tum and continuity equations by perturbing the basic state, dropping all nonlinear
disturbance terms and eliminating the disturbance pressure. Both horizontal velocity
components, u and v, are then eliminated in favour of the vertical velocity component,
w, through the use of the continuity equation. The resulting system is scalar and
has only w and η as dependent variables. Since there are no lateral boundaries, a
functional dependence of eikx is assumed for all dependent variables, where k is the
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wavenumber for the assumed two-dimensional disturbances. After some manipulation
we obtain

(2β2∂t − (∂zz − k2))(∂zz − k2)w = −ikRe(φc cos t+ φs sin t)(∂zz − k2)w

+ikRe(φ′′c cos t+ φ′′s sin t)w. (2.5)

The wall boundary conditions are now

w = ∂zw = 0 at z = 1. (2.6a)

The free-surface conditions are linearized with respect to the equilibrium level. The
conditions for the normal and tangential stresses, as well as the kinematic condition,
are, respectively,

(2β2∂zt − ∂zzz + 3k2∂z)w − 2k2

(
χ+

k2

2ψ

)
η = −ikRe(φc cos t+ φs sin t)∂zw, (2.6b)

∂zzw + k2w = ikRe(φ′′c cos t+ φ′′s sin t)η, (2.6c)

2β2∂tη − w = −ikRe(φc cos t+ φs sin t)η, (2.6d)

at z = 0. The expressions for the non-dimensional parameters appearing in (2.5,
2.6a–d) are

2β2 =
ωh2

ν
, Re =

U0h

ν
, χ =

gh3

2ν2
, ψ =

(
ρν2

σh

)
. (2.7)

The physical quantities appearing above but not yet defined are: acceleration due
to gravity g; density of liquid ρ; surface tension σ and kinematic viscosity ν. The
term 2β2 represents the dimensionless imposed frequency, and β is the ratio of the
layer depth to a Stokes layer thickness. The Reynolds number Re is a measure of the
modulation amplitude, and the parameter χ is a non-dimensional measure of gravity,
sometimes referred to as the Galileo number. It corresponds to the Reynolds number
for a liquid film flowing due to gravity. The parameter ψ involves the surface tension
and is related to the crispation number by the Prandtl number; it is used because
there are no thermal effects. Also, ψ and χ are used instead of the conventional
Bond number and, say, χ or ψ, in order to have two parameters, one of which solely
contains g while the other solely contains σ. These parameters are convenient for
microgravity research. On the other hand, the Weber number and Froude number
are not used here because we want Re to be the only parameter containing the
modulation amplitude, U0, and to define the other parameters so as to be appropriate
for the unmodulated case.

3. The long-wavelength expansion
The long-wavelength expansion is reviewed briefly in order to present Yih’s (1968)

result for the value of Re0 corresponding to neutrally stable long-wavelength dis-
turbances and also because Yih’s results have been extended to higher order. For
sufficiently small k, w, η and Re can be expanded as

w(z, t) = k(w0 + kw1 + k2w2 + k3w3 + k4w4 + . . .), (3.1a)

η(z, t) = η0 + kη1 + k2η2 + k3η3 + k4η4 + . . . , (3.1b)

Re = Re0 + k2Re2 + . . . , (3.1c)
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where Re is understood to be the Reynolds number for neutrally stable disturbances.
At each order of k, the dependent variables can be separated into temporally sinu-
soidal functions multiplied by functions of z. The following form of representation is
appropriate for the first few terms:

w0 = iRe0(ŵ0 cos t+ w̌0 sin t), η1 = iRe0(η̂1 cos t+ η̌1 sin t), (3.2a)

w1 = Re2
0(w1 + ŵ1 cos 2t+ w̌1 sin 2t), η2 = Re2

0(η2 + η̂2 cos 2t+ η̌2 sin 2t). (3.2b)

This form represents a synchronous response and is dictated by the forcing at the
wall. In the complex form above, it should be noted that switching from the real to
the imaginary parts introduces nothing new except for a shift in t. Factors associated
with Re0 appear at each order of expansion of the dependent variables because k not
only enters the equations by itself but also in combination with Re in the modulation
terms. Two solvability conditions arise via the mean terms generated at orders k2

and k4, which determine values of Re0 and Re2, respectively. The following complex
notations are introduced for further simplifications:

Φ = φc + iφs, Wk = ŵk + iw̌k, Nk+1 = η̂k+1 + iη̌k+1, k = 0, 1, 2.

The balances at each order of k are now described.

(i) Zeroth-order. After inspecting the governing equation and boundary conditions,
we conclude that at O(k0) the velocity is zero and η0 is constant, corresponding to a
static spatially periodic deflection of the free surface. As a normalization condition,
we impose η0 = 1 in the subsequent results.

(ii) First-order. From here on, the balance at each order poses a fourth-order
boundary-value problem. At O(k1), the governing equation is

i2β2D2W0 + D4W0 = 0, (3.3a)

where D denotes an ordinary derivative with respect to z, subject to boundary
conditions

W0 = DW0 = 0 (3.3b)

at z = 1 and

D3W0 + i2β2DW0 = 0, D2W0 − Φ′′(0) = 0 (3.3c)

at z = 0. This flow is clearly generated via the shear-stress boundary condition for
the lowest-order disturbed free surface, as seen by (3.3d). Although this boundary-
value problem can be solved analytically in a reasonably straightforward manner,
the algebra becomes tedious for the higher-order boundary-value problems and so a
numerical approach is then used. For consistency, the above problem is also solved
numerically by a tau method, using Chebyshev polynomials in the z-direction (see
§ III(c) of Joseph & Renardy 1993 for details concerning this method). The numerical
discretization yields the following matrix equation,

Aw0 = q.

where the vector w0 represents the Chebyshev coefficients. The matrix equation can
be inverted to give w0. Having evaluated W0, N1 is then given by

N1 =
i

2β2
(W0 − Φ(0)). (3.3d)

At this order, Re remains undetermined. The driving term Φ′′(0) arising at this order
from the deflection of the shear-free surface is small at both low and high values of β2.
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(iii) Second-order mean field. Mean terms arise at O(k2) due to the in-phase
interactions of the basic flow and disturbance terms, as well as to the horizontal
hydrostatic pressure associated with the lowest-order surface deflection. The first
solvability condition is determined from the mean equation at this order, which is
associated with the following boundary-value problem:

D4w1 = − 1
2
(φcD

2ŵ0 + φsD
2w̌0) + 1

2
(φ′′c ŵ0 + φ′′s w̌0), (3.4a)

with boundary conditions at z = 1

w1 = Dw1 = 0 (3.4b)

and at z = 0

D3w1 = − 2χ

Re2
0

− 1
2
(φcDŵ0 + φsDw̌0), (3.4c)

D2w1 = − 1
2
(φ′′c η̂1 + φ′′s η̌1), (3.4d)

and

w1 = − 1
2
(φcη̂1 + φsη̌1). (3.4e)

Equation (3.4c) is the only equation which contains Re0; it can be used to evaluate Re0

because the remaining equations form a non-singular inhomogeneous matrix equation
for w1, which can be readily inverted. We remark that the solvability condition in
(3.4a–e) is obtained from the redundancy of the inhomogeneous boundary-value
problem considered here, rather than from Fredholm’s alternative. To compare with
Yih’s stability criterion, we define the quantity L(β) as

L(β) = −(D3w1 + 1
2
(φcDŵ0 + φsDw̌0))z=0, (3.5)

where L(β) is tabulated and plotted in Yih’s table 1 and figure 2. Equation (3.4c) can
then be expressed as

2χ

Re2
0

− L(β) = 0, (3.6)

which can be rewritten as

L(β) = Fr−2,

where Fr denotes the Froude number. There is obviously no solution for L < 0. For
L > 0, we have

Re0 =

(
2χ

L(β)

)1/2

(3.7)

for a neutrally stable solution. The criterion for instability

Re0 >

(
2χ

L(β)

)1/2

originally appeared in Yih’s analysis as the expression L(β) > Fr−2. Re0 increases as χ
increases because gravity then exerts an increasingly strong effect upon the deflection
of the free surface, which is required for the instability. From Yih (1968, figure 2),
L(β) has a maximum near β = 1, and so the minimum value of Re0 for a given value
of χ occurs when the Stokes flow thickness is approximately equal to the depth of
the layer. If we had used a similar long-wavelength analysis for Re = 0 in order
to find the decay rate using a diffusive time scale, we would have found a decay
rate proportional to k2χ, corresponding to a monotonic decay of the lowest-order
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Figure 2. A plot showing L(β) and the relative contributions of the individual terms in L(β) as
functions of β. For description of curves see text.

free-surface deflection via diffusion. Here the advective terms appearing on the right
of (2.6b) act to counteract the effects of diffusion, presumably in a manner akin to
that discussed by Smith (1990) for the falling film problem.

The expansion was carried to O(k4) in (3.1a) and O(k3) in (3.1b). As a result,
Re2 was determined during the solution for w3(z), again by means of a solvability
condition. However, the situation is more complicated at this order because Re2

is contained in the governing equation and all the boundary conditions, unlike the
problem involving Re0. Nonetheless, the value of Re2 is again obtained by solving
the inhomogeneous matrix equation arising from use of the Chebyshev tau method
when a redundant boundary condition occurs.

The oscillatory Stokes flow in a liquid layer becomes unstable to both long-wave
and finite-wavenumber disturbances in the presence of free-surface deformation. The
value of Re2 controls both the curvature of the neutral curves and, as we shall see,
is used to locate the point at which the finite-wavenumber neutral curves bifurcate
from the long-wavelength neutral curves. In this way, the long-wavelength analysis
serves as a valuable complement to the fully numerical approach. The basic flow and
the disturbance field interact and generate a mean field, through which the energy of
the basic flow amplifies the disturbance field. The mechanism for the instabilities can
be understood better by examining the two solvability conditions in the long-wave
expansion. The long-wave instability is relatively simple to understand in terms of
the normal-stress condition at z = 0, by studying the relative importance of terms
in L(β) in (3.5). For a neutrally stable solution to be possible only over a finite β
interval, L has to change sign. There are three terms in L: −D3w1, − 1

2
φcDŵ0 and

− 1
2
φsDw̌0. All three terms arise from p in the normal-stress expression, after p is

eliminated by substituting from the two horizontal momentum equations. The first
is a diffusive term; the second and third are Reynolds stress type terms. These three
terms are shown, respectively, in the dashed, dashed-dotted and dotted curves in
figure 2, in which a logarithmic scale is used for the ordinate. The heavy curves show
the positive segments of the curves, whereas the thinner curves show the absolute
values of the portions of curves where the values are negative. The solid curves
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represent the sum of these three terms. The heavy solid curve represents a positive
L for which a neutral solution is possible. The thin solid curve represents a negative
L and therefore no neutral solution is possible. The actual curves are continuous
but exhibit rapid changes in the regions where sign changes occur. Since the curves
are generated at a β increment of 0.1, such rapid variations are not captured in
figure 2. The results, though, show that the diffusive term −D3w1 is positive at about
β 6 1.4 and becomes negative afterward. It therefore promotes a neutral solution
only at low β. The second term − 1

2
φcDŵ0 is positive over wider ranges of β than

where it is negative. However, for β > 1.4, the slightly larger negative contribution
of −D3w1 over the positive contribution of − 1

2
φcDŵ0 renders this latter term too

weak by itself to generate the instability at the values of Re0 determined (see § 5).
For β > 1.4, the main contribution to the heavy solid curve comes from the term
− 1

2
φsDw̌0 which slightly overbalances the diffusive term. A similar evaluation of the

non-homogeneous terms arising in the equation for w3 was made but will not be
reported here for brevity. The results can be obtained from the author.

As pointed out by an anomymous reviewer of this paper, synchronicity is a
necessary condition for the long-wavelength expansion. At O(k), the right-hand side
of boundary condition (2.6c) necessarily requires σi = 0. The condition is preserved
as one carries on to the higher order. For arbitrary wavelength, synchronicity for
a certain matrix time-dependent ordinary differential equation is demonstrated in
Appendix A.

4. The fully numerical method
In the fully numerical method, (2.5) is solved directly subject to (2.6a–d). The

z-dependence is again expanded in terms of Chebyshev polynomials. The difference
now is that time-dependent amplitudes are involved and must be determined. The
asymmetric boundary conditions are treated by Lanczos’ tau method (Gottlieb &
Orszag 1981, p. 11). Since the Chebyshev polynomials (modes) in general do not satisfy
the boundary conditions, in the tau method the dependent variable is represented by
Nt+k Chebyshev functions, where the governing partial differential equation provides
Nt ordinary differential equations with time-dependent coefficients, upon expansion
and averaging with each Chebyshev function. The boundary conditions on both sides
of the layer provide the rest of the k ordinary differential equations to close the
system.

The numerical procedure yields an infinite sequence of difference matrix equations
with time as the independent variable, shown symbolically as (A1) in Appendix A.
Instead of solving a truncated augmented system, we solve the sequence of equations
by a successive elimination method which is described in Appendix B. The method is
based on an iterative approach using the Newton–Raphson method.

Most of the solutions computed here use 28 Fourier modes and 14 Chebyshev
modes. The convergence test used is that, by increasing each of the Fourier and
Chebyshev modes by 2, the converged iterate changes by less than 2%. All our
computations are done in matlab.

5. Results
In this section we present both results of the long-wave expansion and of the fully

numerical method. The long-wave results are obtained by extending Yih’s findings
to the O(k2) term in (3.1c). While these results can also be computed by the fully
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numerical method, parameter sweeps can be done with the long-wave results in
a significantly faster fashion than with only the fully numerical method, in which
the wavenumber is an internal parameter to be searched for over a large band of
values in order to locate the minima of Re. Owing to the large number of solutions
required to construct a neutral curve, we only report two representative cases here
with parameters selected on the basis of findings from the long-wave results: (i)
ψ = 0.05 and χ = 1.0 and (ii) ψ = 0.5 and χ = 0.3. A wide variety of liquids, ranging
from water to silicon oil, have ρ on the order of 1 g cm−3 and σ on the order of 10–
102 dyne cm−1. Here we let ρ = 1.0, σ = 30. The earth-bound gravity is 981 cm s−1.
Based on the definitions of χ and ψ in (2.7), for case (i) we obtain h = 5.5× 10−2 cm
and ν = 0.29 cm2 s−1; and for case (ii) we have h = 0.1 cm and ν = 1.2 cm2 s−1. A
way to find an experimental liquid in this viscosity range is by mixing more viscous
with less viscous miscible liquids. The other way is by heating a thicker oil since ν
decreases with temperature.

For case (i) we first present the combined long-wavelength and finite-wavelength
results. We then locate the set of branch points at which the finite-wavenumber
neutral curves appear by varying both ψ and χ in the long-wavelength analysis. Case
(ii) is done more selectively; we focus mainly on certain interesting features. After
studying the neutral curves and stability boundaries, we then turn to some analysis
of the unstable disturbances’ mode shapes for both cases, focusing primarily on the
steady components of the disturbances.

In figure 3(a), we show three U-shaped neutral curves, which represent the stability
boundaries for Yih’s long-wave solution. These curves are obtained from the first
solvability condition. Note that the ordinate has a logarithmic scale. As demonstrated
by Yih (1968), the long-wavelength instability is controlled by the Froude number
and β. Thus, from (3.7), we conclude that the family of U-shaped neutral curves is
unchanged with respect to χ if Re/χ1/2 is used as the ordinate.

On the family of U-curves, the solid portions of the curves represent stability bound-
aries of the most dangerous long-wavelength unstable modes. They are therefore the
physically preferred ones, corresponding to the lowest critical Re. The dashed portions
of the U-curves are not associated with criticality due to competition from the new
finite-k instability, whose neutral boundaries are shown by oblique lines emerging
from the U-curves at branch points. In figure 3(a), which corresponds to case (i),
each branch point is shown as a solid circle on each U-curve. The set of monotonic
neutral curves associated with the finite-k instability have critical wavenumbers that
vary with the imposed frequency. Figure 3(b) shows the variation with β of the critical
wavenumber, kc, along each monotonic neutral curve. As β decreases from above,
kc → 0 at the branch points. As β becomes larger, the kc of the higher branches
become smaller and smaller. They seem to tend to zero asymptotically. On the third
branch shown, kc ≈ 0.03 at β = 10. The vertical shape of this finite-k neutral mode
closely resembles that of the long-wave solution (see figure 8).

We make a comparison between the approximate long-wave and the fully numerical
results in figure 4, and it is clear that very substantial error can occur by use of the
long-wave expansion results for cases for which a finite-wavelength instability can be
critical. The region studied is near the first branch point at β = 2.563, and we use the
same figure to discuss what happens in the vicinity of this branch point. The lower
solid neutral curve corresponds to β = 2.5625. In this case, we clearly see that Re
increases monotonically with k. The upper solid curve for β = 2.5640, however, has
a minimum at k = 0.24. The curve connecting all the minima for various β in this
range near 2.563 produces the dashed-dotted curve, which is the stability limit, or
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Figure 3. (a) The stability limits in the (β, Re)-plane; (b) the corresponding kc for the critical
finite-wavelength modes. This case has ψ = 0.05 and χ = 1.0.

the bifurcation curve of the instability. As k → 0, the stability limit tends to a value
Re0 ≈ 35.035 which corresponds to Re2 = 0, i.e. ∂kkRe = 0 to the order considered.
A branch point therefore shows where Re2 switches sign. The branch point has a
more general interpretation according to the centre-manifold description in dynamical
system theory. On the neutral curve the real part of one complex Floquet exponent
crosses zero. This provides a condition for a one-parameter family of neutral curves.
At the branch point, the real part of a second complex Floquet exponent also crosses
zero. Thus, the set of branch points is determined by two parameters. A bifurcation
point that depends on two controls is of codimension two. Typically, two unstable
modes whose neutral curves connect at the bifurcation point have different physical
characteristics. In this case, one neutral curve has kc = 0 and the other has kc 6= 0
away from the branch point. The condition that ∂kkRe = 0 at the branch point has
been used to locate the branch point from the long-wavelength results. While the
long-wave neutral curves do not shift with respect to ψ or χ when Re/χ1/2 is used
as ordinate, the finite-k neutral curves, on the other hand, change with variation of
these two parameters. Since the set of finite-k neutral curves emerge from the set
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Figure 4. A comparison between the exact (heavy solid) and approximate (thin dashed) neutral
curves. The critical curve is heavy dashed-dotted. Other parameters are ψ = 0.05 and χ = 1.0.

of U-curves at the branch points, the behaviour of branch points with variation of
ψ and χ is of interest. We now study the change of the first two branch points. In
Figures 5(a) (first branch point) and 5(c) (second branch point), we show the shift
in the β-position of the two branch points as both ψ and χ vary. Figures 5(b) and
5(d) basically provide the same information as 5(a) and 5(c) in terms of the values in
Re/χ1/2. The solid, dashed and dashed-dotted lines represent the three cases ψ = 0.5,
0.25 and 0.025, respectively. Below (above) each curve of the branch point, Re2 is
positive (negative).

Let us first consider the behaviour of the first branch point. As shown in figures
5(a) and 5(b), the behaviour in terms of its β and Re/χ1/2 values is monotonic in ψ or
in χ. Since χ is proportional to g, the results suggest that a larger value of gravity for
a given layer thickness tends to be associated with the finite-k instability occurring at
a smaller modulation amplitude. The behaviour for the variation of layer thickness
at a given value of gravity is less obvious. For a small h, χ→ 0 and ψ becomes large.
In this situation the branch point is pushed towards the cut-off point of the U-curve
and therefore corresponds to higher Re/χ1/2. For a large h, the effects of χ and ψ
are opposite. But since χ varies as h3 and ψ varies only as h−1, the behaviour in the
asymptotic case as h → ∞ seems dictated by the value of χ. It seems that a thicker
layer tends to make the finite-k mode more unstable in this case.

The behaviour of the second branch point is quite different from that of the first
one, as shown in figures 5(c) and 5(d). Now, at a large value of χ, regardless of ψ,
β appears to approach a value of 5.2 (the minimum critical point occurs at about
β = 4.7) where Re0/χ

1/2 is about 250. But as χ tends to a smaller value before
reaching zero, it is apparent that a non-monotonic behaviour can occur, depending
on ψ. Such a complex variation with χ and ψ is manifested by the dashed curve at the
intermediate value ψ = 0.25. From studying the curves, we can see that the branch
point first moves down the right-hand branch of the U-curve but, short of reaching
the left-hand branch, it swings back up the right-hand branch. The differences in
behaviour between the first and second branch points suggest that the force balances
responsible for the two bifurcation points vary.
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Figure 5. (a, c) The change of β values of the first and second branch points with χ for three ψ
values: 0.025 (dashed-dotted); 0.25 (dashed) and 1.0 (solid); (a, b), and (c, d) correspond, respectively,
to the first and to the second branch points of figure 2(a); figure (b) and (d) show their Re0/χ

1/2

values.

We now turn to the results of the second case corresponding to ψ = 0.5 and χ = 0.3.
We limit our focus to the region of the first two U-curves. Relative to the first case,
we have a significantly thinner layer with weaker surface tension. In figure 6, the
thin solid lines show the first two U-curves which are identical to those shown in
figure 3(a) except for the vertical scale. The two solid circles represent the two branch
points. The heavy solid lines are the finite-wavenumber neutral curves. The first
neutral curve resembles the one in figure 3(a). The critical wavenumber associated
with this curve is shown as the left-hand curve in the inserted panel in figure 6. The
second heavy neutral curve is of interest here, because it emerges from the left side
of the second U-curve and then turns around under it, in contrast to the situation
shown in figure 3(a). By doing so it avoids going above the thin neutral curve and
thereby forms a critical curve. More detailed results on this curve show that, along
the curve, β first increases as it leaves the branch point, but shortly afterwards the
curve encounters its first fold point and then turns left afterward. From here β starts
to decrease along the curve. On the scale in figure 6, the portion of the curve near the
first fold is not clearly seen (see schematic insert in figure 7 for further illustration).



Instability in a horizontal liquid layer on an oscillating plane 225

103

2 3 4 5 6

102

101

2 3 4 5 6

2

1

b

0

kc

b

Re
χ1/2

Figure 6. The stability limits in the (β, Re)-plane for the case ψ = 0.5 and χ = 0.3. The solid dots
again show the branch points. The thick (thin) solid lines show the finite-k (long-wave) stability
limits. The inserted panel shows kc for the finite-wavelength limits as a function of frequency.

350

0 0.5 1.0 1.5

150

100

k

200

250

300

b

F2

F
1

F
2

M

C

B

A

F1

CB

A

Re
χ1/2

M

Figure 7. A family of neutral curves showing the pinch near the second branch point and the
ring-shaped neutral curves enclosing unstable islands resulting from pinching.

As the curve continues leftward, it encounters a second fold near β = 4.13 and then
turns right again. After this second turn, the curve becomes monotonic in Re as β
increases. In the inserted panel, the right-hand curve shows the kc on this second
neutral curve. After increasing from zero at the second branch point, the critical
wavenumber turns downward after encountering the second fold before eventually
increasing again.

Further details of the shape of the neutral curves near these folds are of interest
and are shown for the family of neutral curves in the (k, Re)-plane in figure 7. For
clarity in interpreting these results in figure 7, we show an exaggerated version of the
heavy curve in figure 5 emanating from the second branch point in the inserted panel
of figure 7. Starting at the top left corner of figure 7, the outermost heavy solid curve



226 A. C. Or

represents a neutral curve corresponding to point A in the inserted panel, where the
line with both A and B on it is the left-hand branch of the U-curve. This neutral curve
is evaluated at β = 4.3. As β increases, (∂kkRe)k=0 decreases and eventually crosses
zero right at the second branch point B. Beyond point B the U-curve is no longer
the critical curve. The new critical curve is associated with a finite kc and is shown
by the curve BF1F2M. Between the branch point B and point F1, it is possible for
the k-family of neutral curves to have minima in Reynolds number corresponding to
finite wavenumber, as shown by the thin solid line labelled C in the upper left corner
region. At the first fold point, F1, we encounter a pair of separatrices. This pair
of curves is shown schematically by the thin solid lines through F1 in figure 7. The
separatrices represent the outermost curves of two k-families of neutral curves. The
upper family consists of open neutral curves and the lower family consists of closed
neutral curves. The minimum of the outermost curve in the upper family is at the
fold F1, which is also the maximum of the outermost curve in the lower family. The
minimum of the outermost curve in the lower family is point M. As a point moves on
the critical curve from point F1 to F2 (refer to the inserted panel), the closed neutral
curves of the lower family become smaller and smaller (see schematical curves) and
finally, at the second fold point F2, the closed curve shrinks to a point. The value
of β at point F2 is about 4.13. The heavy solid closed curve shown in figure 7 is
at β = 4.2. As the critical point passes point M to its right, its associated k-family
neutral curve becomes open again. At β = 4.32, we show one such neutral curve in
figure 7. This is the long dashed curve just outside the separatrices.

The family of pinch-shaped neutral curves and the isolated unstable islands that
are associated with it is similar to a result found earlier by Pearstein (1981), in a study
of the stability of a rotating doubly diffusive fluid layer (see his figure 10). In the
background of figure 7, for other comparisons we also include several other neutral
curves (thin-dashed). The curve with the lowest minimum is at β = 4.4. The next
curve is at β = 4.7, and the uppermost curve is at β = 5.4.

Typically the set of neutral curves is obtained from a one-dimensional Newton–
Raphson iteration on Re, by iterating either on k or on β. Near the folds, this
iteration scheme fails to converge for obvious reasons. Then we switch to iterate on
β instead, by prescribing a value for Re. But we are only interested in the minima of
the family of neutral curves with respect to wavenumber, i.e. the k where ∂kRe = 0.
The condition ∂kRe = 0 in the case of iterations on β becomes ∂kβ = 0. The latter
condition is derived as follows. By differentiating Re = Re(β, k) and keeping Re
constant, we obtain

∂Re

∂k
+
∂Re

∂β

∂β

∂k
= 0.

Since ∂kRe vanishes, we expect ∂kβ = 0 unless ∂βRe = 0.
As the number of unstable modes increases, it is important to identify the shapes

of the modes. In figure 8(a–d), the mean field of the vertical velocity is denoted
by w1 and is normalized by its maximal value. Since the flow is two-dimensional,
the horizontal component of velocity can be obtained from the continuity equation.
Figure 8(a–c) is obtained at ψ = 0.05 and χ = 1.0 and figure 8(d) at ψ = 0.5 and
χ = 0.3. In figure 8(a), we show the w1 of the three long-wave modes at their
β-minima of the three U-curves. These minima correspond to β = 1.1, 4.6 and
8.0, respectively. The first mode (see also Yih 1968) has a cantilevered shape. The
second one has a single peak, whereas the last one has an asymmetric double-maxima
feature. All three long-wave modes have been computed at k = 0.01 with the fully
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Figure 8. The mode shape of w(z) at neutral stability. Values of the various parameters are
described in the text.

numerical method (solid). The results agree very well with the long-wave expansion
(dashed): the solid and dashed curves almost overlap. The cantilever-shaped mode
has maximal disturbance amplitude at the free surface. The second and third modes
of disturbances, despite some minor differences, resemble a row of vortices with a
very long wavelength, for which the maximal disturbance amplitude occurs near the
midplane. The free surface is undisturbed by these two modes.

Figure 8(b) shows the w for the finite-wavelength modes at kc for β = 4.0 (solid), 7.0
(dashed) and 10.0 (dashed-dotted). Although the first curve has a single maximum,
the second mode has two maxima and therefore gives rise to a double row of vortices,
one stacked on top of the other. The third mode in turn has two maxima and
corresponds to very small kc; in the case shown we have kc = 0.038.

In figure 8(c) we show two modes corresponding to different Re (at k = 0.03 near
their critical wavenumbers) for a large β = 9.0. One has Re = 1.8× 104 and the other
Re = 1.1 × 105, separated by almost an order of magnitude. The solid curve shows
the finite-wavelength mode corresponding to the lower of the two Re and is similar
to the one at β = 10.0 in figure 8(b). The dashed curve is on the first branch of the
finite-k neutral curve.

Figure 8(d) last panel is obtained at a different set of ψ and χ. The three curves
are obtained at β = 2.7 (solid), 4.0 (dashed) and 5.0 (dashed-dotted), all at the same
kc. Results in figure 8(d) shows a close resemblance to those in 8(b). In studying the
mode shapes it should be emphasized that the profiles shown correspond to steady,
spatially periodic flows.

6. Concluding remarks
We have identified a bifurcation point of codimension 2 on each of the U-curves

corresponding to neutrally stable long waves. Each such point gives rise to an oblique
critical curve associated with a finite-wavelength instability. The finite-wavelength
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instability depends on surface tension effects in addition to gravity. Unlike the
long-wave mode, the finite-wavelength mode occurs continuously as the imposed
frequency varies and thus fills up the gaps in the unstable regions resulting from the
long-wavelength analysis.

The changes among the various mean terms in the free-surface stress conditions
are examined, and the dominant terms associated with Yih’s long-wave mode are
identified. The finite-wavelength instability is significantly more complicated as it is
found that the second critical curve can exhibit folds and separatrix connection. The
force balances in the two solvability conditions, as well as the mode shapes, depend
very much on the imposed frequency.

I thank Professor R. E. Kelly for both support and encouragement, as well as
for numerous discussions which have made this work possible and for reviewing the
manuscript. Stylistic comments by the reviewers are also acknowledged. This research
was supported by the NASA Microgravity Fluid Physics Program through Grant
NAG3-1456.

Appendix A. On the non-existence of subharmonic solutions

Subharmonic and synchronous instabilities are both quite common among tem-
porally modulated flows. Problems involving modulation of thermal gradient (Yih
& Li, 1972) or gravitational acceleration (Clever, Schubert & Busse 1993) contain
subharmonic as well as synchronous solutions. In contrast, no subharmonic solution
has so far been reported in systems in which the modulation is shear-induced; see
e.g. Kelly & Hu, (1994), Or & Kelly, (1995), and Schulze & Davis (1995). In this
Appendix, we provide a basic argument to explain why in one case subharmonic
solutions can occur but in the other case they cannot. This argument, like Floquet
theory, is based solely on the basic mathematical properties of the equations and not
on the detailed physics of the actual phenomena.

Through applications of numerical methods, the truncated, finite-dimensional sta-
bility problem can typically be expressed in matrix form as

ωB
d

dθ
x = Ax+ αF (θ)x. (A 1)

In our present discussion, we further assume that all three matrices, A, B and F are
real. The phase angle θ = ωt, rather than time, is used as the independent variable
here, where ω is the imposed frequency. We focus our discussion on two cases now:
α = 1, which represents systems with real coefficients, e.g. due to modulation of the
basic temperature or gravity; and α =

√
−1, which represents the system studied here

as well as other shear-modulated stability problems. When the stability results are
symmetric about Re = 0, i.e. for Re > 0 and Re < 0, these two cases are identical to
the cases α = −1 and α = −

√
−1.

In (A 1), all matrices except F (θ) are constant; F (θ) is time-periodic, satisfying the
following condition

F (θ ± π) = −F (θ). (A 2)

We emphasize that (A 2) is a more stringent condition than the 2π-periodic condition;
and implies a periodicity of 2π; and that the modulating force has to vanish when
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averaged over a period 2π; that is,∫ 2π

0

F (θ) dθ = 0.

The above condition is typical and implicitly assumed in most stability problems
involving modulation. Floquet theory provides the mathematical form for the solution,
namely

x(θ) = x̂(θ) eσθ (A 3)

where σ is complex equal to σr +iσi, σr is the growth rate and σi is a second frequency
that is associated with quasi-periodic motion of the system. What makes the Floquet
form useful is that x̂(θ) has the same period 2π as F (θ). Floquet theory by itself,
however, does not yield stability information, nor does it impose further restrictions
on the above functional form.

A general numerical procedure does not discriminate between whether (A 1) is real
or complex or whether the neutral solutions should be periodic or quasi-periodic.
In the general scheme, upon substituting the Floquet form into the equation, the
real and imaginary parts of the resulting complex algebraic system will provide two
equations for determining the two real parameters σr and σi, if all other parameters are
prescribed. Examining (A 1) suggests, however, that there are situations in which there
exists a certain symmetry property in the equation which imposes further restrictions
on the Floquet form of solution. A restriction is a built-in redundancy in the real
and imaginary parts of the Floquet form. As a result of the redundancy, a solution
can only admit certain values of σi. Furthermore, as the real and the imaginary parts
of the equation are independent, the system essentially reduces to one real equation
to determine one real unknown, σr .

For the case α = 1, the symmetry in (A 1) is the invariance of the equation to
complex-conjugate operation. As a result, a solution can always be expressed in real
form, σi = 0. Based on Floquet theory, over one full period we have

x(θ + 2π) = Kx(θ), (A 4)

where K is the amplification factor. Since x is real, there are two possible values
of K . These are K = ±eσr2π . The positive sign corresponds to σi = 0 (synchronous
solutions) and the negative corresponds to σi = 1/2 (subharmonic solutions). There
is no third possibility.

The second case, α =
√
−1, is less straightforward. Now, assuming condition (A 2)

to be satisfied, (A 1) is then invariant under the combined operation of a translation
of phase by π and the conjugate operation. Thus, if x(θ) is a solution, then x∗(θ+ π)
is a solution. Unlike in the real case, this symmetry relation is not very useful when
applied directly to the Floquet form (A 3). The reason is that the solution in this case
is neither real or imaginary, but complex. In this case, we direct our argument to the
expansion form for periodic solutions. Basically, we will argue that there exists an
expansion for synchronous solutions, but that there is no non-trivial expansion for
the subharmonic solution consistent with the imposed symmetry property. In such an
expansion, a synchronous solution can be represented as

x(θ) = eσrθ
∞∑

n=−∞
xn einθ, (A 5)
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and a subharmonic solution of order 1/2 as

x(θ) = eσrθ
∞∑

n=−∞
xn ei(n+1/2)θ. (A 6)

The two expressions are obtained from the general Floquet expansion by letting
σi = 0 and σi = 1/2, respectively. We note that a trivial solution with all the
Fourier coefficients equal to zero is always a solution of the governing equation.
We now apply the translation-conjugacy operation in turn to each of the above
expansions. After regrouping terms in the resulting series, we then do a term-by-term
comparison between the two series for x∗(θ + π) and x(θ), based on the relationship
x∗(θ + π) = Kx(θ), where K is an arbitrary complex constant. We then obtain a
set of conditions for the expansion coefficients. For the synchronous solutions, after
eliminating the redundancy in the coefficients, we obtain

x(θ) = eσrθ {x0 + i(x1c cos θ + x1s sin θ) + (x2c cos 2θ + x2s sin 2θ) + ...} , (A 7)

where now all coefficients are real. One can now easily check that the symmetry is
satisfied. In the above, the even terms are real but the odd terms are imaginary. We
now turn to the subharmonic case. Again applying the translation and conjugate
operations to (A 6), redefining the index so that we can cast the series into the same
form as (A 6) except for the coefficients, we obtain

x∗(θ + π) = eσr(θ+π)

∞∑
n=−∞
{x∗−(n+1) ei(n+1/2)π} ei(n+1/2)θ. (A 8)

The above arguments now lead to the following important relationship:

Kxn = x∗−(n+1) ei(n+1/2)π eσrπ.

We can absorb the factor eσrπ into K without loss of generality. For simplicity we
also keep the same notation for K . After separating the above condition into real
and imaginary parts we obtain

Krx
r
n −Kix

i
n = (−1)nxi−(n+1), (A 9a)

Krx
i
n +Kix

r
n = (−1)nxr−(n+1), (A 9b)

with the superscripts r, i denoting the real and imaginary parts, respectively. The
set of conditions is true for an arbitrary integer n. Now we consider two indices,
n = 0,−1. At n = 0, we obtain

Krx
r
0 −Kix

i
0 = xi−1, Krx

i
0 +Kix

r
0 = xr−1. (A 10)

At n = −1, we obtain instead

Krx
r
−1 −Kix

i
−1 = −xi0, Krx

i
−1 +Kix

r
−1 = −xr0. (A 11)

Using (A 10) to eliminate the terms xr−1 and xi−1 in (A 11), we obtain

(K2
r +K2

i + 1)xr0 = 0, (K2
r +K2

i + 1)xi0 = 0, (A 12)

which implies xr0 = xi0 = 0. Similarly, we conclude that xr−1 = xi−1 = 0. The above
results along with conditions (A 9a, b) give the trivial solution, one with all coefficients
equal to zero. Thus, the subharmonic expansion can only admit the solution x = 0.

Before we end the discussion, we note two important points. (i) When A or
B is complex, it is certainly possible that this complex configuration with a real
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modulation matrix can fall within our discussion for the case α = 1 of real matrices.
If the complex system contains a real eigenvalue, it is possible that the complex system
resembles our real case of α = 1 when transformed to the eigensubspace. Therefore it
not surprising to notice that subharmonic solutions can exist, for example, in Woods
& Lin’s (1995) model, in which A is complex due to the presence of mean shear. One
of the eigenmodes possessed by their system represents Faraday waves, which can
be subharmonics. (ii) The argument depends solely on the expansion form and the
symmetry condition. It does not depend on such details as whether the unmodulated
eigenmode is monotonic or oscillatory.

Appendix B. A matrix iterative method
Here we provide an iterative scheme for solving (A 1). We note ω = 2β2 and

α =
√
−1 and replace F (θ) by Re(F c cos θ + F s sin θ). According to Floquet theory, a

general response x(θ) can be expanded in the following form,

x(θ) =

∞∑
n=−∞

xn einθ+σθ, (B 1)

where the xn are constant vector coefficients and σ is the complex Floquet exponent.
Along the neutral curves σr , the real part of σ, vanishes. In general we can always
consider the imaginary part, σi, in the principal range 0 6 σi < 1. Direct substitution
of (B 1) in (A 1) yields the following infinite set of matrix difference equations:

(A− ω(σ + in)B)xn = −Re(F ∗xn−1 + Fxn+1), n = −∞, .., 0, ..∞, (B 2)

where

F = 1
2
(F c + iF s),

and F ∗ denotes its complex conjugate. The infinite set of difference equations is
truncated. Closure is imposed by neglecting all terms outside the range of the two
terms x−(Np+1) and x(Np+1) in the series. Augmenting the truncated set will still yield
a large matrix eigensystem. The augmented matrices possess a block-tridiagonal
property, which suggests that the set of difference equations can be treated by a direct
successive elimination procedure.

At n = Np, we have

xn = Rnxn−1, Rn = −Re(A− ω(σ + in)B)−1F ∗. (B 3)

First, by proceeding with a backward substitution beginning at n = Np−1 and ending
at n = 1, we obtain the following sequence of equations:

xn = Rnxn−1, Rn = −Re(A− ω(σ + in)B + ReFRn+1)
−1F ∗. (B 4)

At n = 1 the final equation is x1 = R1x0. Second, the forward substituion starts at
n = −Np, which gives

xn = Rnxn+1, Rn = −Re(A− ω(σ + in)B)−1F . (B 5)

The forward substitution starts at n = −Np + 1 and ends at n = −1. It gives the
sequence of equations,

xn = Rnxn+1, Rn = −Re(A− ω(σ + in)B + ReFRn−1)
−1F . (B 6)

The final equation is x−1 = R−1x0. Both chains have length N. The n = 0 equation
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from the original sequence is

(A− ωσB)x0 = Re(F ∗x−1 + Fx1).

After eliminating x±1 in the n = 0 equation, we obtain a homogeneous equation
governing x0,

{A− ωσB)x0 + Re(F ∗R−1 + FR1)} x0 = 0, (B 7)

which admits a non-trivial solution if the determinant vanishes. Now, we can either
determine a real parameter on the neutral curves as well as the value of σi, or we
can imposed all the parameter values and determine the growth rate as well as the
modulation frequency.

In the actual numerical implementation we used, the above complex scheme has
been reduced to a real scheme, by restricting to either the synchronous (σi = 0) or
the subharmonic (σi = 1/2) responses. A subharmonic scheme has actually been
incorporated to search for subharmonic solutions by numerical means. The result
obtained so far indeed confirms the conclusion of Appendix A.
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